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An equivalence theorem for a massive spin one particle 
interacting with Dirac particles in quantum field theory 

J D JENKINS 
Physics Department, University of Durham, South Road, Durham City, UK 

MS received 12 November 1971 

Abstract. The (1,O) @ (0, 1) massive spin one field ~ J x )  is quantized following the method 
of Takahashi and Umezawa. The interaction Hamiltonian in the interaction picture is 
then calculated for such a field interacting in a simple way with Dirac fields. In contrast 
with a remark of Kyriakopoulos, the generalized Matthews’ theorem is found to apply to 
the calculation of S matrix elements. The analogous theory in terms of the Proca field is 
given in outline, and the two theories are found to be inequivalent. A discussion of how 
the inequivalence arises is given; then it is demonstrated how equivalent theories may be 
constructed, and the equivalence is proved. 

1. Introduction 

In relativistic quantum field theory a massive spin one particle is more often than not 
described by the Proca field VJx) which transforms under the (b, Q) representation of the 
Lorentz group (SU(2) 0 SU(2) decomposition). Such a mode of description is not 
however unique. In fact, as has been pointed out by Weinberg (1964a, 1964b, 1969), 
it is possible to describe a spin one particle by a field which transforms under any 
representation of the Lorentz group satisfying the condition that, when it is restricted 
to the rotation subgroup, the representation contains the spin one amongst its com- 
ponents. Thus another simple possibility is to describe a spin one particle by an anti- 
symmetric tensor field +&) which transforms under the (1,O) @ (0,l) representation 
of the Lorentz group. The use of such a field is attractive for two reasons. Firstly, 
the (1 ,O)  @ (0,l) representation, when restricted to the rotation subgroup, unlike the 
(Q, +) representation, only contains the spin one amongst its components. This has the 
advantage that one is not involved with the subsidiary conditions usually needed to 
remove unwanted spins from the field. Secondly, the antisymmetric tensor field is 
the direct generalization to spin one of the Dirac equation for spin half particles. 

Now it is known that in the free-field case the antisymmetric tensor field and the 
Proca field are entirely equivalent (Kyriakopoulos 1969). However when interactions 
are introduced the situation is not so simple, and these two fields will in general give 
rise to inequivalent theories. This being said, it is the purpose of this paper to explore 
in detail, in the example of a spin one particle interacting with Dirac particles, how 
such inequivalent theories arise, how they differ and finally how their differences may 
be resolved. 

The plan of the paper is as follows. In $ 2  the Lagrangian for the system of the 
antisymmetric tensor field and the Dirac fields is set up, and the interaction Hamiltonian 
is calculated following the method of Takahashi and Umezawa (1953) (Takahashi 1969). 
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This process is then repeated in outline only in 5 3 for the well known case of the Proca 
field interacting with the Dirac fields. The inequivalence of these two theories is com- 
mented on in 0 4, and it is shown how the interactions must be modified in order that 
the differences may be resolved. 5 5 is devoted to a discussion and conclusions. 

2. The antisymmetric tensor field 

For simplicity, the antisymmetric tensor field 4u,(x) is taken to be hermitian. and its 
free Lagrangian is given byt 

2’(x) = +4~’ (x )wuv ; Ja  + P2jUVj&#JAW 

A p v  j .p(2) = +(gp j.&zp + gv,?,S;. - g@/]S&? j ,  - gvj.Zpd,) 

1 .  p v / . p  = q  - 2 g p i g v p  - g p p g \ ’ j . ) .  

A[iv),p(6)4;.”(~) = (Auv;,,,(dj +,“lU,j,pj4’.’’(~~) = 0 

where 

( 1 )  

and 

( 2 )  

Whence follows the equation of motion 

( 3 )  

the solutions of which to be considered here being restricted throughout to those 
antisymmetric in the tensor indices. 

Incidentally two points concerning the equation ( 3 )  may be noted. Firstly, i t  is 
precisely the equation considered by Kyriakopoulos (1969) ; however i t  will be treated 
here in a manner which differs from his approach, some comparative remarks being 
made in 4 5. Secondly, it is dual to the generalization of the Weinberg equation for 
spin one (Weinberg 1964a) considered by Hammer er a1 (1968) written in tensor form. 

The field +&,(x) may now be quantized by the method of Takahashi and Umezawa 
(1953) ; and, following Takahashi (1969), the Klein-Gordon divisor, dpvi,,(c?). defined by 

Apvj,p(ZP$(2) = (2’ + P ’ j l p w D  

is readily found to be 

(4) 

The commutator of the field qbpY(x) is now given in terms of the Klein-Gordon divisor 
as follows: 

(5) [+p”(x)>  +&’)I = - i&Ap(W(x - x’) 

and the free-particle propagator is given by 

t The metric used in this paper is (gM,) = diag (1, - 1, - 1, - 1). 
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where 

A J x )  = 6 ( x o ) A + ( x ) -  e( - x 0 ) A - ( x )  

and A*(x) ,  A(x)  are the well known solutions of the Klein-Gordon equation. 
The position has now been reached where the interaction between the above field 

and Dirac fields may be considered, and, on the grounds of simplicity, the Lagrangian 
is taken to bet 

2 ( x )  = W ( i 8  - "w + w v ( X ) ( A , v a p ( a )  + P 2  ~pva,)@*p(x)  

- - J p v ~ x ~ @ p v ( x )  - -(J,(x)a, - J V ( X ) ~ , ) @ " ' ( X )  

Jpv(x)  = g , W 4 o , , J l ( x )  (8) 

J,(4 = g2wY,Jlr (x) .  (9) 

(7) 
P 1 

J 2  J 2 P  
where 

and 

The consequent equations of motion are 

(11) 
c1 1 

(Apv%,@) + P 2 ~ , , i , ) $ " ( 4  = --J&) + -(a,Jdx) - a,J,(x)). 
J2 J 2  P 

These equations are now quantized, and the interaction Hamiltonian found following 
the method of Takahashi and Umezawa (1953) (Takahashi 1969). 

Firstly equations (IO) and (11) are solved by the method of Green functions to give 

m 

$(x )  = Z i i 2 @ ( x )  - d(d)Aret(x - x')Z(X') d4x' 

P 
J- m 

m 

$ , d X )  = Z i ' 2 $ , v ( ~ )  - dpVA,,(d)Aret(~ - x')-Jdp(x')  d4x' 
J 2  

- J-m aadPv,,(a)Aret(x - x')-Jp(x') J2 d4x' 
m P 

where 

Aret(x) = 8(xo)A(x)  
and 

4 8 )  = -(i$+m) 

t From this stage on, quantities written as, for example +,JX) and q5,,,(x) will be taken as Heisenberg and 
interaction picture quantities respectively. 
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is the Klein-Gordon divisor of the Dirac field. Next the auxiliary fields are defined by 

df - 8d,v ,p(?)A(x  - x’) ---Jp(x’) d‘x‘ 
- J I  P 

where the point x need not necessarily lie on the spacelike surface o. I t  now follows 
from equations ( 1 2 x 1 5 )  that 

IC/(x/a) = $(x)  - 11 [@x, - xb), d(?)]A(x - x‘)Z(x’) d“x‘ (16) 
I 

P 
@,,,(x/o) = +pb(x) - [d(x, - xb), dpvi,(d)]A(x-x’) Tpp(x’)  d‘s’ 

where now the notation x / a  means that the point x is restricted to being on the spacelike 
surface o. On use of the identities 

where qp is the unit normal to the spacelike surface o, equations (16)-(18) reduce res- 
pectively to 

$W) = N X )  (21) 

The currents can now be expressed in terms of the auxiliary fields through equations 
(21)-(23) as follows : 
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Finally, on noting that the auxiliary fields satisfy the same commutation relations 
as their Heisenberg picture counterparts, for example equation ( 5 )  for the antisymmetric 
tensor field, the interaction Hamiltonian density is calculated from the equations 

where the currents on the right hand side are to be taken as expressed in terns of the 
auxiliary fields through equations (24H26).  Having calculated Zinl(q, x/o) from the 
above two equations, the interaction Hamiltonian density is obtained from it merely 
by replacing the auxiliary fields therein by their interaction picture counterparts. Thus 

It will now be shown that in calculating the S matrix to second order in the coupling 
constants the interaction Hamiltonian may be taken to be effectively 

provided that, whenever a contraction of the antisymmetric tensor field occurs, the T* 
product, defined by 

is used in place of the full expression for the free-particle propagator given by equa- 
tion (6). The extension to all orders in the coupling constants follows exactly the method 
of Kyriakopoulos (1969), is tedious and is consequently omitted. 
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To second order in the coupling constants the S matrix is given by Dyson's formula 
as 

x d"xd"x'+ . . . 

2 
x ( T(@\(X), pyx ' ) )>o  +--J (x)J,(x') (T(d j.@>.(x), a;f#P(x')))" 

+ J,,(x)J;.(x') ( 7 - ( 4 Y X ) >  o';P(x'))>o 

P 2  

+J,(x)J,,(x')( T(8Bc#fv(x), @p(x')))o d"x d4x' 

+terms not of second order in the coupling constants and terms 

(30) 

The expression (6), together with the identities (19) and (20) are used to give the following 
expressions for the propagators appearing in the above : 

I 
involving only external spin one particles. 

Now it is clear by inspection that a substitution of these expressions into (30) leads to 
the desired cancellations, and thus the prescription given by equations (28) and (29) 
may be used for the calculation of the S matrix. 

I t  should be noted that this result contrasts with the results of Kyriakopoulos (1969) 
and a discussion of this point is given in 3 5. 

3. The Proca field 

The Proca field is here assumed to be hermitian, and given by the free Lagrangian 

9( x) = - $( d ,  V,( x) - d, V,(x)) (d. V( x) - d" V,( x)) + $ p' V,( x) V,( x) 

whence the equation of motion 

- ((i' + p 2 ) g , ,  - 2,d,,)Vv(x) G A,,(o')V"(x) = 0. 
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This field may again be quantized following the method of Takahashi and Umezawa, 
and the Klein-Gordon divisor, defined by 

A,"(a)dv,(a) = (a2 + P2k,, 

is easily calculated to be 

(32) a,a, 
d,@) = g , v + z .  P 

Thus the commutator of the field VJx) is 

[ V,(x), Vv(x')] = - id,,(a)A(x - x') (33) 

and the free-particle propagator is given by 

( T (  V,(x), K(X')))~ = - id,,,(8)Ac(x - x') - i[O(x, - xb), d,,(d)]A(x - x'). (34) 

The interaction between the Proca field and the Dirac fields is, again on grounds of 

~ ( x )  = $(x)(i$- m)\lr(x)-&~pVv(x)-~v ylr(x))(a,V,(x)-a,V,(x)) 

simplicity, introduced by means of the Lagrangian 

++$ V,(x) ylr(x)-+J,,(X)(a~ VV(x)-dV v"(x))-J,(x)ylr(x) (35) 

where the currents J,(x) and J,,(x) are again given by equations (8) and (9). The equations 
of motion following from (35) are 

(36) 

(37) 

g (i8 - "(4 = 2 ~ , , W X )  (8, VYX) - av V W )  + gzr,$(x) VP(X) 

((aZ + P2)8, ,  - a,aJ V V ( X )  = J,(x) - avJ,,(x). 

Starting from these equations the method of Takahashi and Umezawa is again used to 
calculate the interaction Hamiltonian. Since the calculation is completely analogous to 
that of 5 2 the details are omitted, and the final form of the interaction Hamiltonian is 
merely quoted, namely 

Xi",(V, x) = & , ( x ) ( a ~ v v ( x )  - 8 V " X ) )  + J,(x)Vyx) 

It will now be shown that in calculating the S matrix to second order in the coupling 

(39) 

constants the interaction Hamiltonian may be taken to be effectively 

Z n , ( X )  = +J,,(X)(aPVV(X) - aVV"(x)) + J,(X)V@(X) 

provided that, whenever a contraction of the vector field occurs, the T* product, defined 
by 

( T*(V,(x), V,(X')))~ = - id,@)AC(x - x') (40) 

is used in place of the full expression for the free-particle propagator given by equa- 
tion (34). The extension to all orders again follows the argument of Kyriakopoulos 
(1969) and is omitted. 
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On including only second order terms which do not involve only external vector 
fields, the S matrix is given by Dyson’s formula as 

2 P  1 S = i /-xx T ~ ~ J , , ( X ) J ~ ~ ( X ) ~ ’ ~ ~  -7(J,(x)qp))2 1 d4x 

- ?~”V”(x’))), + J,(x)J,(x‘) ( T (  V@(X), V”(X‘))), 

+$J,,(x)J,(x’) (T(2,VV(X) - .‘”Vfl(x), V”(x’))), 
+iJ,(x)J,,(x’) ( T (  V’(X), ~”V’(X’)  - d”V‘(~’)))o) d“x d‘x’ + . . . . 

(41) 
Now the expression (34), together with the identities (19) and (20) are used to find the 
following expressions for the propagators appearing in (41) : 

i 
P 

( T (  V,(x), Y,(X’) ) )~ = - id,,(2)Ac(s - x‘) -lqpvvC5(4)(x - x‘) 

( T (  V,(x), 2iV,(x’) - 2>Vj(x’))), = - i(d;,d,,(;) - d;dMi(2))AC(x - s’) 

(T(d, v , ( x )  - 2,V,(x), V , , ( X ’ ) ) ) ~  = - i(2,dv,(2) - Z\,dpP(d))Ac(x - s’) 

( T(2,Vv(x) - 2,V,(x), S;,V,(x’) - ~ ; V ; ( X ’ ) ) ) ~  = - i(2$1dvp(2) 

+ dV2>d,A(2) - d,d>dvA(2) - 2\,didpJ,(d))Ac(x - x‘) 

+ i (g ,m, ,  + gvpvjlvi - g,,?lvvi - g”AvjlvJ~(4)(x - x’). 

I t  is clear by inspection that a substitution of these expressions into (41) leads to the 
desired cancellations, and thus the prescription given by equations (39) and (40) may be 
used for the calculation of the S matrix. 

4. The equivalence theorem 

The two theories set out in $9 2 and 3 are, as they stand, inequivalent. To see this consider 
them in the forms where the effective Hamiltonians (28) and (39), and the T* products 
(29) and (40) are used. In these forms the two theories bear a striking resemblance to 
one another. For, as may be checked by solving the wave equations in momentum 
space and applying the normalization condition (Takahashi 1969), the wavefunctions 
of the pairs of interaction picture fields i(a,V,(x) - a,V,(x)), (,u/J2)4,,(x) and V,(x), 
(J’2/p)dy4Jx)  are in each case exactly the same. Thus also the forms of the interaction 
Hamiltonians (28) and (31) are effectively the same, and the only place that an inequi- 
valence can arise is in the form of the T* products for the fields. To see how this leads 
to inequivalence consider for example the following 

p2 i 
( ~ * ( 4 , ” ( x ) , 4 A , ~ x x ‘ ) ) > 0 ~  = j(A,,,,(4 - (Z2 + P2~41”,+)AC(X - x‘) 

and 
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which are just the expressions given respectively at  the ends of # 2 and 3. Evidently 
these two expressions just differ by a term proportional to 

(13' + p2)A,.(x - x') = - c ~ ' ~ ' ( x  - x')  

that is by a contact-type term. Similar remarks hold for the other T* products, and 
it is seen that the two theories just differ by the contact interactions necessary to ensure 
the equality of the corresponding T* products. More precisely, as will be demonstrated 
below, the theories given by the Lagrangians (35) and 

are equivalent. 
The equations of motion corresponding to (42) are 

(44) 

and it is not difficult to see that the essentials of the calculation of 0 2 carry through in 
exactly the same manner for the equations of motion (43) and (44). Consequently the 
effective interaction Hamiltonian 

P 1 
(A,"@) + PZ ~ , y l p ) ~ a p ( x )  = --J, ,(X) +-(a,J"(x) - a , J , ( X ) )  

J 2  J 2  c1 

P 1 
- e " , ( X )  = -J ,y(x)+Pv(x)  + ---((J,(x)a, - J v ( x ) ~ , ) + B v ( x )  

J 2  J 2  
1 1 

--J,"(X)J"(X) 4 +-J 2p2 (X)JP(X) (45) 

may be used in conjunction with the T* product to calculate the S matrix corresponding 
to (42). 

To see that the S matrix, so calculated, is the same as the S matrix calculated in 
terms of (39) and (40), consider the effect of the insertion of the two contact interactions, 
appearing in (4.54, in the expression (30). It is not difficult to see that, to second order in 
the coupling constants, they cause sufficient cancellations for the effective interaction 
Hamiltonian 
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to be used in conjunction with the T** product. defined by 

etc, to calculate the S matrix. The extension to all orders again follows the method of 
Kyriakopoulos (1969). In view of equations (46k(48), and the remarks concerning 
wavefunctions made at the beginning of this section, it is now evident that the Lagran- 
gians (35) and (42) lead to the same S matrix. 

An alternative approach to the proof of equivalence is to find the transformation 
of field variables which takes the Lagrangians (35) and (42), and their equations of 
motion (36), (37) and (43), (44) into each other. The required transformation is 

and 

I t  is evident by inspection that the above transformation takes equations (36) and (43) 
into each other. To see the connection between equations (37) and (44), (44) is first 
differentiated by contraction with I? to give 

where the antisymmetry of @&) has been used. Now a use of (50), together with the 
expression obtained from i t  by contraction with S’, namely 

reduces (51) to (37). The transformation is reversed by differentiating (37) by Z P ,  anti- 
symmetrizing and then using the equations (49) and 

which follows from (49) by the appropriate differentiations. 
To verify that the transformation (49) and (50) takes the Lagrangians (35) and (42) 

into one another requires a certain amount of juggling with 4-divergence terms, and so 
perhaps the simplest way of doing it is through the intermediate stage of the Lagrangian 
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(42) written wholly in terms of the field 8p@,,(x), namely 

1 1 
+ j J , , ( x ) J y x )  ---J ( x ) P ( x )  

2p2 Ir 

where +(x) and dp@,,(x) are to be taken as the basic field variables with respect to which 
variations will be made, and the field @,,(x) is defined to be connected to dh$,,(x) 
through equation (44). Then a tedious calculation, the details of which are omitted, 
shows that the Lagrangians (35) and (42) are connected, through the intermediate stage 
(52), by the transformation defined by (44) and (50). 

5. Discussion and conclusions 

In $ 2  the method of Takahashi and Umezawa (1953) (Takahashi 1969) was used to 
calculate the interaction Hamiltonian corresponding to the Lagrangian (7), and the 
generalized Matthews' theorem (Matthews 1949, see also Takahashi 1969 for a more 
detailed discussion), concerning the neglect of the so called normal-dependent terms, 
which appear in the propagators and the interaction Hamiltonian, was found to be 
applicable. This contrasts with certain remarks made by Kyriakopoulos (1969). 

Firstly, the remark, made in that paper, that the method of Takahashi and Umezawa 
is not applicable to the case of the antisymmetric tensor field, seems to stem from an 
unwillingness to consider the possible appearance of terms proportional to the Klein- 
Gordon operator in the expression for the Klein-Gordon divisor ; whereas, as may be 
seen in equation (4) of the present paper, such terms are necessary. Secondly, the 
breakdown of the generalized Matthews' theorem in the example of Kyriakopoulos, 
allegedly caused by the appearance of contact terms in the effective Hamiltonian 
(namely that to be used in conjunction with the T* product), is only apparent. To see 
this, it should be noted that the sole reason for the appearance of these contact terms is 
to compensate for the fact that the choice of T* product, which is made by Kyriakopoulos, 
is not the correct one, as is given in equation (29) of the present paper. Thus when these 
contact terms are just considered implicitly, through their effects on the free-particle 
propagators, the correct form, (29), for the T* product obtains and the generalized 
Matthews' theorem is satisfied. 

Although the antisymmetric tensor and vector fields are equivalent for the descrip- 
tion of free spin one particles, the example studied in the present paper indicates that, 
on the introduction of interactions, the issue becomes far more complicated. For, as 
was seen in $ 4, an interaction involving the antisymmetric tensor and Dirac fields, and 
the analogous interaction involving the vector and Dirac fields give rise to inequivalent 
theories ; whilst, since the only practical differences between the above two theories arise 
in the forms of the propagators, equivalent theories may be obtained only at the cost of 
complicating either interaction by the introduction of contact terms. 
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This last remark is of importance, since, once it is realized that the essential differences 
between analogous theories, involving the above spin one fields, arise only from the 
different forms of the propagators. it becomes evident that, given any interaction in- 
volving the antisymmetric tensor field the equivalent interaction involving the vector 
field will only differ from the former by the contact terms necessary to compensate for 
the differences in the propagators. I t  follows that, although a priori there is an arbi- 
trariness both in the choice of field to describe a spin one particle, and in the choice of 
interaction, the real choice is not so wide. For given, say, the antisymmetric tensor 
field and the choice of interaction involving it, a theory can be found which is equivalent 
to any given theory involving the vector field, and vice versa. 

Finally, it is conjectured that this situation will also be true for any spin one field. 
That is, the set of all theories, arising from the possible choices of interaction involving 
any given spin one field, includes all the theories arising from the possible choices of 
interaction involving any spin one field. If true this conjecture would also be expected to 
generalize to any spin. 
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